List 4

Review for midterm exam

101. Calculate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{3}-2 x+1}{6 x^{3}+x^{2}+x+19}=\frac{1}{2}$
(e) $\lim _{n \rightarrow \infty}\left(4^{n}+1\right)^{1 / 4}=\infty$
(b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{6 x^{3}+x^{2}+x+19}=0$
(f) $\lim _{n \rightarrow \infty}\left(4^{n}+n\right)^{1 / n}=4$
(c) $\lim _{x \rightarrow 0}\left(\frac{8 x-1}{x-x^{2}}+\frac{1}{x}\right)=7$
(g) $\lim _{x \rightarrow 7} \frac{x^{2}-4 x-21}{x^{2}-11 x+28}=\frac{10}{3}$
(d) $\lim _{n \rightarrow \infty}\left(\sqrt{9 n^{2}+5 n}-3 n\right)=\frac{5}{6}$
(h) $\lim _{x \rightarrow 0} \frac{x^{3}-8 x^{2}+3 x+5}{x^{9}-6 x^{5}+x^{4}-12 x+1}=5$
102. Suppose $\lim _{x \rightarrow 10^{-}} f(x)=2$.
(a) If the graph of f has a hole at $x=10$, is it possible to know the value of $\lim _{x \rightarrow 10^{+}} f(x)$ from only this information? Yes: 2
(b) If the graph of f has a hole at $x=10$, is it possible to know the value of $f(2)$ from only this information? No
(c) If the graph of f has a jump at $x=10$, is it possible to know the value of $\lim _{x \rightarrow 10^{+}} f(x)$ from only this information? No
(d) If the graph of f has a vertical asymptote at $x=10$, is it possible to know the value of $\lim _{x \rightarrow 10^{+}} f(x)$ from only this information?
No, but it must be either $+\infty$ or $-\infty$.
(e) If the graph of f has a vertical asymptote at $x=10$, is it possible to know the value of $\lim _{x \rightarrow 10^{+}}|f(x)|$ from only this information? Yes: ∞
103. Match the functions with their graphs:
(a) $\frac{1}{x^{2}-1}$
(c) $\frac{x-1}{x^{2}-1}$ (IV)
(b) $\frac{x^{3}}{x-1}$ (III)
(d) $\frac{x}{x-1}$ (I)
(I)

(II)

(III)

(IV)

104. At $x=9$, does the function

$$
f(x)= \begin{cases}2 x-1 & \text { if } x \leq 1 \\ \log _{3}(x) & \text { if } 1<x<9 \\ \sqrt{x} & \text { if } x \geq 9\end{cases}
$$

have a jump, hole, vertical asymptote, or none of these?
Jump because $\lim _{x \rightarrow 9^{-}} f(x)=\log _{3}(9)=2$ does not equal $\lim _{x \rightarrow 9^{+}} f(x)=\sqrt{9}=3$.
105. For which value(s) of the parameter a does the function

$$
f(x)=\frac{x^{2}-a}{x^{2}+a}
$$

have a vertical asymptote at $x=2$? $a=-4$
106. For which value(s) of the parameter a is the function from Task 105 continuous? any $a>0$
107. Which limit expression below gives the derivative of x^{3} at the point $x=2$?
(A) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x}$
(C) $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$
(B) $\lim _{h \rightarrow 0} \frac{h^{3}-8}{h}$
(D) $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-h^{3}}{h}$
108. (a) Find $\left(x^{10}+100 x+1000\right)^{\prime}=10 x^{9}+100$
(b) Find $D[9 x+\sqrt{9 x}]=D\left[9 x+3 x^{1 / 2}\right]=9+\frac{3}{2} x^{1 / 2}$
(c) Find $\frac{\mathrm{d}}{\mathrm{d} x}\left[(2 x+3)^{2}\right]=\frac{\mathrm{d}}{\mathrm{d} x}\left[4 x^{2}+12 x+9\right]=8 x+12$
(d) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $y=\frac{x+12}{2 x} . \quad \frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{x+12}{2 x}\right]=\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{1}{2}+\frac{6}{x}\right]=0+\frac{-6}{x^{2}}$
109. Calculate $f^{\prime}(2)$ for the function $f(x)=x^{4}+4 x$. 36
110. Find the slope of the tangent line to $y=x^{4}+4 x$ at the point $(2,24)$. This is exactly the same as Task 109! 36
111. Give an equation for the tangent line to $y=x^{4}+4 x$ through the point $(2,24)$. The line through $(2,24)$ with slope 36 can be described by $y=24+36(x-2)$ or by $y=36 x-48$ or other formats.
112. Give an equation for the tangent line to $y=\frac{1}{\sqrt{x}}$ at $x=4 . \quad y=x^{-1 / 2}$, so $y^{\prime}=\frac{-1}{2} x^{-3 / 2}$, so the slope is $y^{\prime}(4)=\frac{-1}{2}(4)^{-3 / 2} \frac{-1}{2}(2)^{-3}=\frac{-1}{2} \cdot \frac{1}{8}=\frac{-1}{16}$. The line through $\left(4, \frac{1}{2}\right)$ with slope $\frac{-1}{16}$ is $y=\frac{1}{2}-\frac{1}{16}(x-4)$ or $y=\frac{-1}{16} x+\frac{3}{4}$.

